

Aeromat 2007

Baltimore, 28 June 2007

Development of an Accelerated Insertion of Materials (AIM) System for an Aluminum Extrusion

David Forrest*, Daniel Backman†, Matthew Hayden*, Julie Christodoulou‡

*Naval Surface Warfare Center, West Bethesda, MD

†Worcester Polytechnic Institute and independent consultant

[‡]Office of Naval Research, Arlington, VA

Acknowledgements

- NSWCCD: George Detraz (CAD), Al Brandemarte (metallography), Mary Beth Marquardt (HPC support), Catherine Wong (physical metallurgy)
- Jan Backlund, Bo Bengtsson, Tolga Egrilmezer, Sapa (Extrusion processing, physical metallurgy, samples)
- > Paul Mason, Lars Hoglund, Thermo-Calc (API with PrecipiCalc)
- Herng-Jeng Jou, Questek (PrecipiCalc)
- Mike Foster, Scientific Forming Technologies (DEFORM 3D)
- Jason Pyles, Engenious Software (iSight)
- Yucel Birol, TÜBİTAK Marmara Research Center (macroetchant)

Helpful discussions: Øystein Grong (Norwegian U. of Science and Tech.), Tim Langan (Surface Treatment Technologies)

Overview

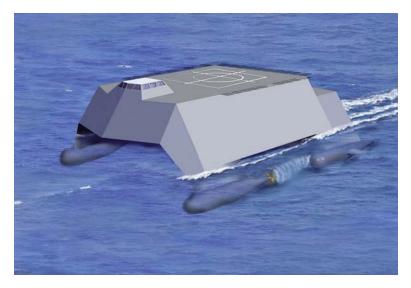


- Computational Materials Science:
 - A natural and important advance in the evolution of materials technology
 - Accelerated Insertion of Materials
 - Materials Engineering for Affordable New Systems
 - Integrated Computational Materials Engineering
 - Through Process Modeling
- Important to Navy: developing internal capability
- Insight into development process
 - Appropriate goals for system demonstration/application
 - Commitment to infrastructure (hardware, software, trained personnel)
 - System architecture that makes sense
 - Knowledge base—processing and physical metallurgy

Technology Transition

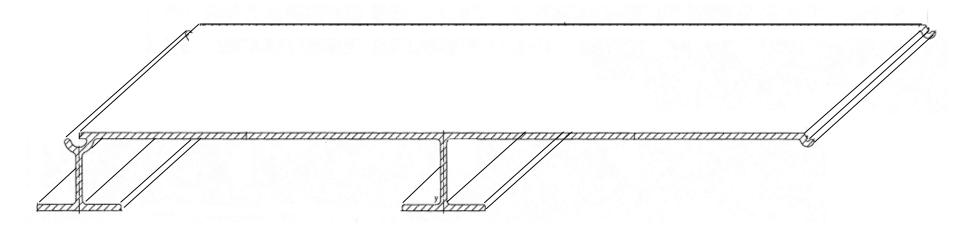
Technology transition is a generic problem, including materials technologies

- General need to accelerate the transition from science into engineering practice
- Computational systems are natural approach
- ➤ MSE community needs to embrace, develop coherent framework→CICME



Importance to Navy

- Reduced cost of testing and evaluation
- > Reduced risk
- > Rapid insertion: advantages over enemy's systems
 - Mobility
 - Survivability
 - Lethality



System Demonstration

AA6082 Sidewall Panels for LCS (1% Si, 0.9% Mg, 0.7% Mn)

System Demonstration

Issues:

- Tradeoff between enough difficulty to show something substantial, yet easy enough to accomplish in ~2 years
- > 6000 series alloy → opportunity to model both extrusion process and microstructural transformations
- > Existing data
- Prior or published understanding of physical metallurgy
- Target properties kept simple: hardness and tensile/yield strength

Infrastructure: Minimal Software Configuration

Software package	Use	
Thermo-Calc	Thermodynamic phase equilibria	
MOB2	Mobility database for kinetics	
ThermoTec TTAL	Aluminum thermodynamic database	
PrecipiCalc	NGC of precipitate phases and size distributions	
DEFORM	Deformation and heat treatment Recrystallization modeling	
Custom software	Strength model based on microstructure	
ISIGHT	Process Integration and Design Optimization	

System Architecture

Carderock Division

CYGWIN (X-Windows)

Thermo-Calc & databases
Floating network license

iSight-FD

Floating network license

SEATech-Halsey
SGI Origin 3400
Unix, 24 CPUs

RDT&E Network

PrecipiCalc

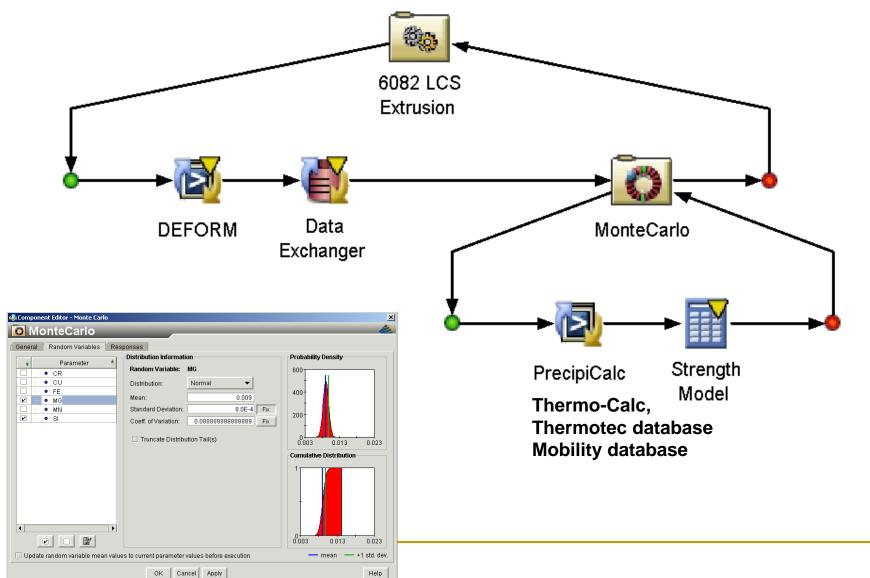
Node-locked

Code 60-Materials
Windows 2000
server

FLEX-LM server Thermo-Calc iSight-FD

DEFORM 3D Node-locked Single user for runs Mobility Databases
Accessed only by PrecipiCalc

Multiple, simultaneous users


Thermodynamic Databases
Accessed only by PrecipiCalc

Beowulf Linux Cluster 96 Dual Xeon CPUs

Mechanics of Operation

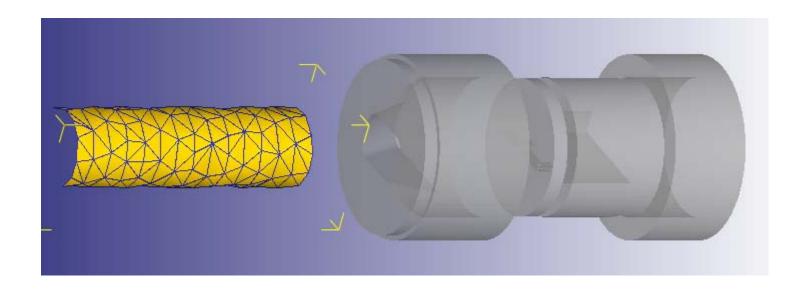
Knowledge Base

- Compositional variations
- Processing parameters
- Physics of deformation and heat treatment operation
- Recrystallization and precipitation models
- Relationships between microstructure and strength
- Microstructural data (e.g., initial precipitate distribution)
- Microstructural and mechanical data to verify numerical results

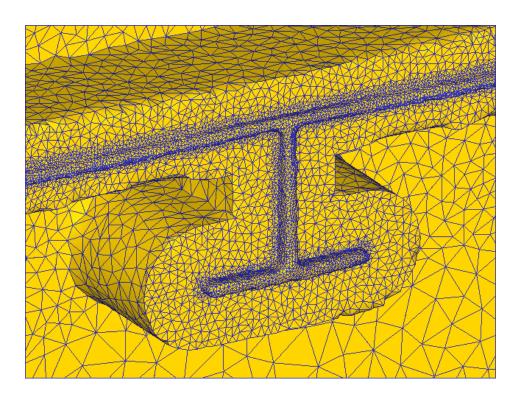
Knowledge Base Process Parameters

Sensitive information

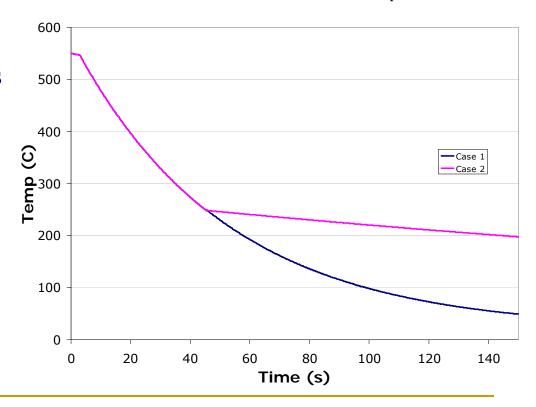
- Profile drawing
- Die drawings
- Thermal conditions of extruder components
- Billet dimensions and temperatures
- Ram speed
- Quenching rates
- Aging times and temperatures
- Billet microstructure


Material for analysis and validation of models

Extrusion simulation


- > 3D problem
- Lagrangian formulation
- > > 50:1 reduction
- Work still in progress

Extrusion Simulation


Thermomechanical Modeling

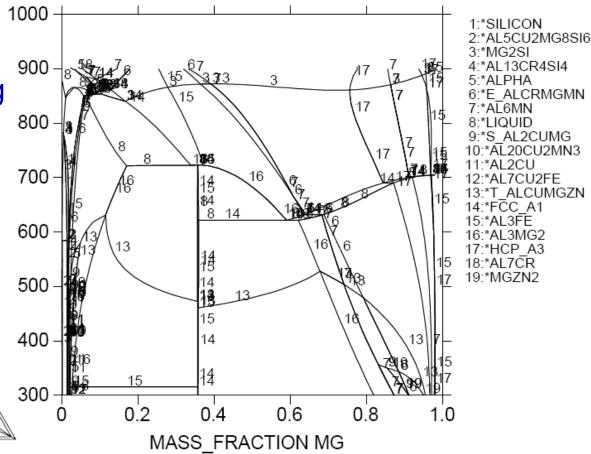
Analytic approximation

- ♦ Small Biot number →
 constant temperature through
 thickness
- Stagnant for first few seconds
- ◆ Then *h* based on maintaining 7°C/sec

$$T(x) = (T_o - T_\infty) * \exp(-\frac{h}{\rho C_p w} t) + T_\infty$$

Thermo-Calc ThermoTec TTAL database

THERMO-CALC (2006.06.06:13.49) : DATABASE:TTAL5


P=1E5, N=1., W(SI)=1.1E-2, W(FE)=2E-3, W(CU)=9E-4, W(MN)=4.8E-3,

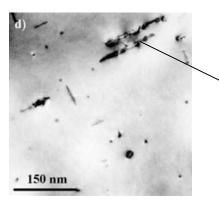
Understanding of phases before precipitation modeling

Rejected all but:

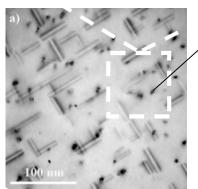
FCC_A1 **ALPHA**

MG2SI

Thermodynamics


- Aluminum matrix (FCC_A1)
 - ◆ 98.9 mole % Al with traces of the other elements in solid solution
- α (ALPHA, aka "Dispersoids")
 - \bullet Al₇₂Si₁₁Mn₁₀Fe₄
 - High temperature phase—present at all temps up to m.p.
 - Mn is primary dispersoid-former
- $\rightarrow \beta, \beta', \beta'' \text{ (MG2SI)}$
 - Thermodynamically stable below 498°C

Thermodynamics


Actual composition of phases

 $\rightarrow \beta \text{ (Mg}_2\text{SI)}$

 $\rightarrow \beta' (Mg_5Si_3)$

Not available in ThermoTec database

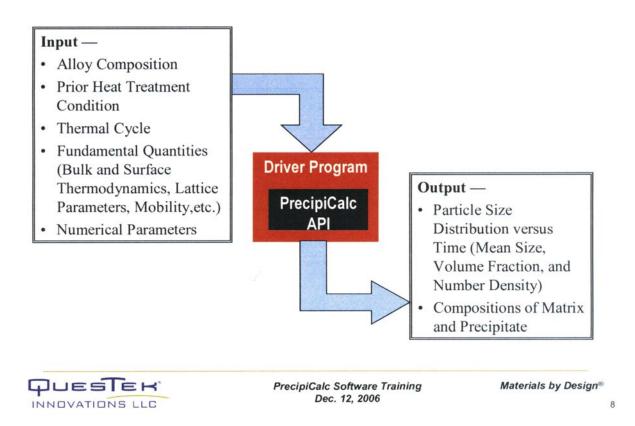
 β''

- \bullet Mg₅Si₆
- ♦ Various measurements Mg_{0.8-1.2}Si
- Not available in ThermoTec database

Precipitation

	MICROSTRUCTURAL COMPONENTS ■ dispersoids • β - Mg ₂ Si — β'- Mg ₂ Si ⊕ β"- Mg ₂ Si				
	Casting & Homogenising	Billett preheating & Extrusion	Cooling from extrusion temperature	Artificial ageing (T5 treatment)	
Heactions	Precipitation of dispersoids and β-Mg ₂ Si	Dissolution of β-Mg ₂ Si	Precipitation of β'—Mg ₂ Si	Precipitation of β"Mg ₂ Si	

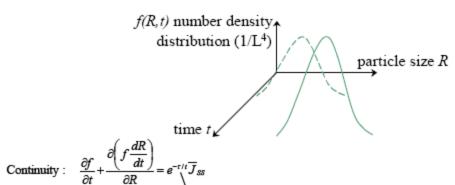
Time



Precipitation Modeling

Using PrecipiCalc to Model Precipitation

PrecipiCalc Input/Output



Precipitation Modeling

(a)

incubation time τ for transient nucleation

$$\text{Mass Balance}: \quad C_i^0 = \frac{4\pi}{3}\int\limits_0^\infty fR^3\overline{C}_i^\beta(R)dR + C_i^\infty(1-\phi) \quad \text{where} \ \ \phi = \frac{4\pi}{3}\int\limits_0^\infty fR^3dR$$

Homogeneous nucleation

Multi-component interactions via Thermo-Calc

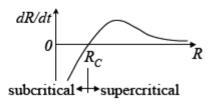
Mg₂Si

Surface energy = 0.055 J/m^2

Lattice parameter = $4.034x10^{-10}$ m

Molar volume = $3.9541x10^{-5}$ m³/mol

Nucleation dislocation density = 10^{25} /m³

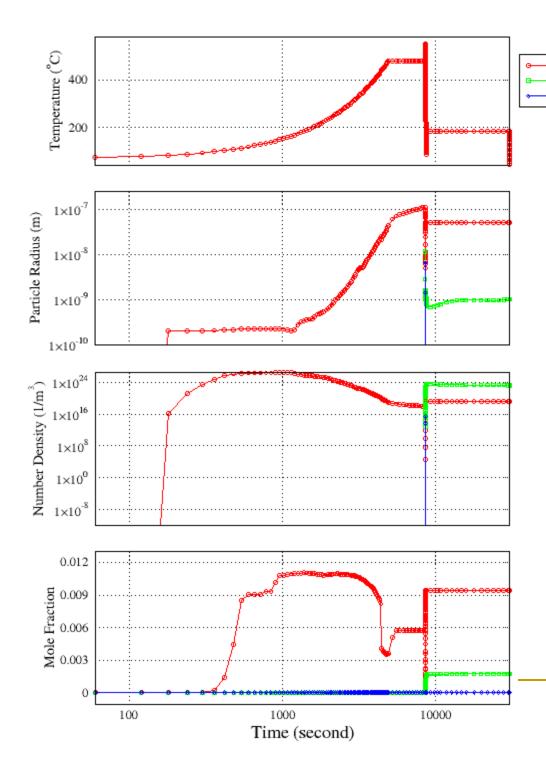

(b) Growth: $\frac{dR}{dt} = \frac{\left(1 + R\sqrt{4\pi N_v \langle R \rangle}\right)}{\left(R\Gamma + s(R) / \left(M_0 \exp{\frac{-Q}{RT}}\right)\right)} \left\{\Delta G_m - \frac{2\sigma(R)\overline{V}_m^{\beta}}{R}\right\}$

where
$$\Delta G_m = \left[\overline{\Delta C_i}\right]^T \left[\frac{\partial^2 \overline{G}^{\alpha}}{\partial C_i \partial C_j}\right] \left[\Delta C_j^{\infty}\right] + \left[\overline{C}_n^{\beta}\right] \cdot \left(\left[\overline{\mu}_m^{\alpha}\right] - \left[\overline{\mu}_m^{\beta}\right]\right)$$

$$\Gamma = \left[\Delta C_i \right]^T \left[\frac{\partial^2 \overline{G}^{\alpha}}{\partial C_i \partial C_j} \right] \left[\overline{D}_{jk} \right]^1 \left[\Delta C_k^{\alpha} \right]$$

Thermodynamics Diffusivity

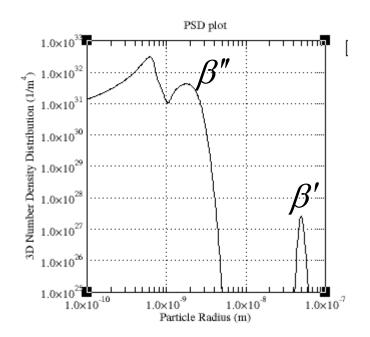
Interfacial Property

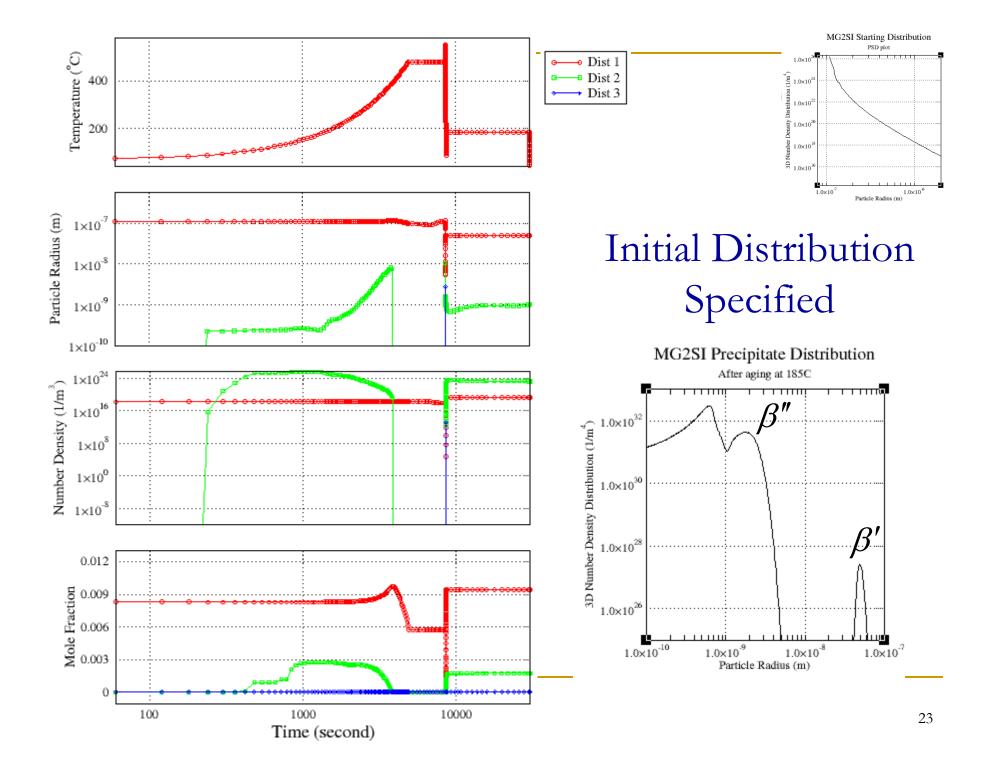


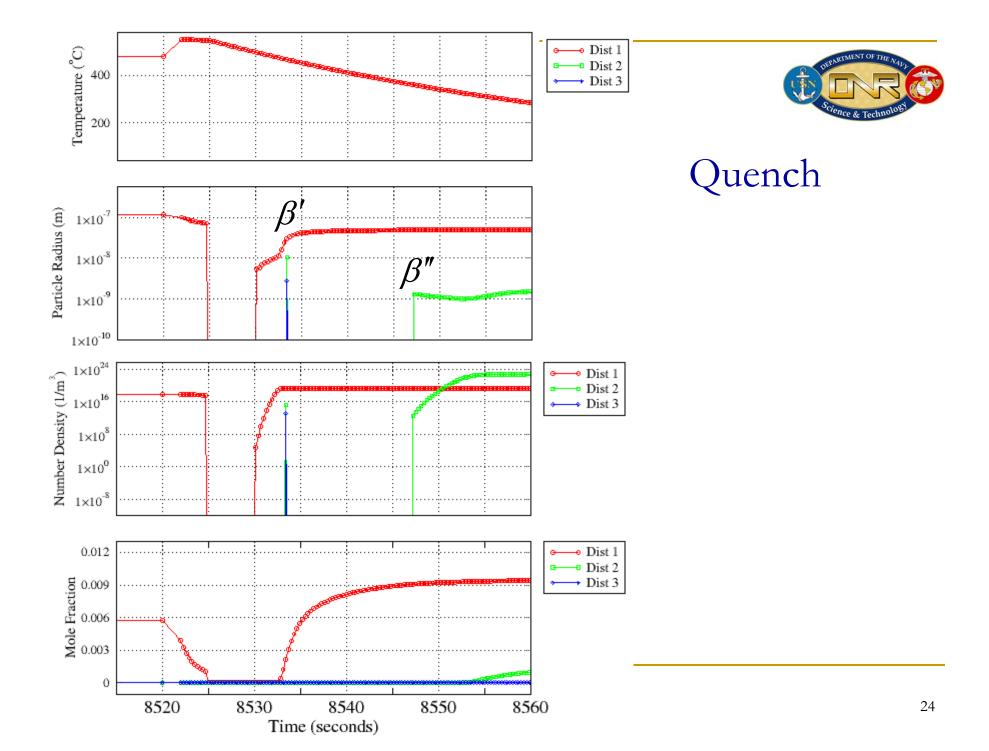
Steady State Nucleation Rate $J_{SS} = Z\beta^* \frac{N_a}{V_m^\beta} e^{\frac{-\overline{W}_b^*}{k_B T}} = \int\limits_0^\infty \overline{J}_{SS}(R) dR$

Incubation Time τ calculated from

$$\begin{cases} \int_{0}^{\tau} \beta^{*}(t')dt' = \frac{1}{\theta Z(t)^{2}}, & \text{if } \tau < t \\ \int_{0}^{\tau} \beta^{*}(t')dt' + \beta^{*}(t)(\tau - t) = \frac{1}{\theta Z(t)^{2}}, & \text{if } \tau > t \end{cases}, \text{ where } 2 < \theta < 4\pi$$

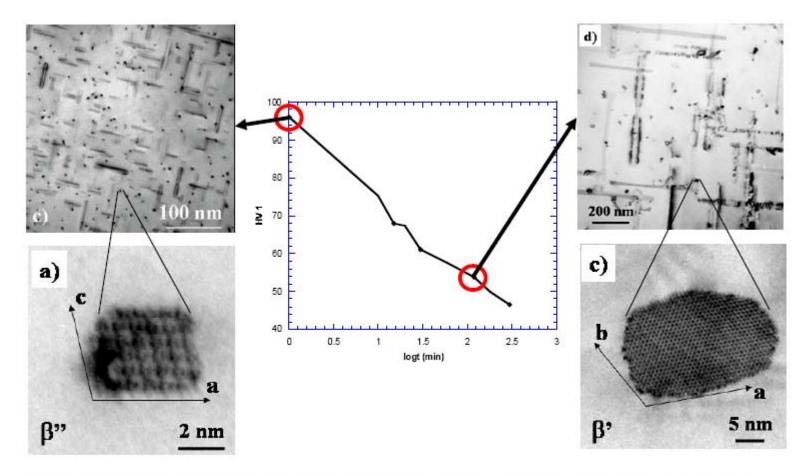

which gives $\tau = \frac{1}{\theta \beta^* Z^2}$, at isothermal conditions.





Exemplar Result

→ Dist 1 → Dist 2 → Dist 3



Precipitation

Hardness curve (middle) shows the dissolution/transformation of a β " microstructure (left) into β ' (right). The material softens because the β ' rods are less efficient in opposing dislocation movement due to their incoherent interface with the matrix.

Strength Model

$$\sigma_{y} = \sigma_{i} + \sigma_{ss} + \sigma_{p}$$

$$\sigma_p = \frac{M}{b\bar{r}} (2\beta G b^2)^{-1/2} (\frac{3f}{2\pi})^{1/2} \bar{F}^{3/2}$$

$$\overline{F} = rac{\displaystyle\sum_{i} N_{i} F_{i}}{\displaystyle\sum_{i} N_{i}}$$

Shearable particles, $r_i < r_c$

$$\overline{F_i} = 2\beta Gb^2 \left(\frac{r_i}{r_c}\right)$$

Strong, non-shearable particles, $r_i > r_c$

$$\overline{F_i} = 2\beta Gb^2$$

M Taylor factor, 3.1

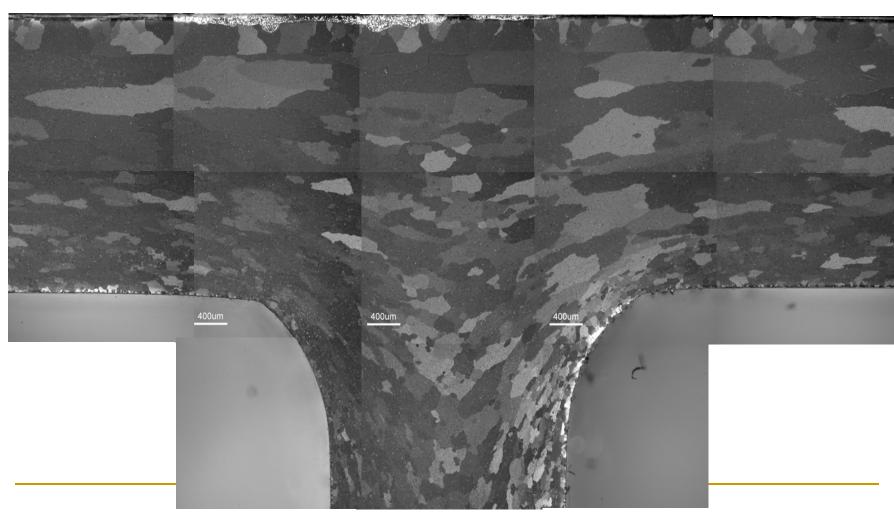
 r_c critical radius, 5×10^{-9} m

b Burgers vector, 2.84×10^{-10} m

G shear modulus, $2.7 \times 10^{10} \text{ N/m}^2$

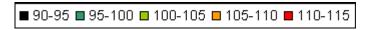
 β constant, 0.36

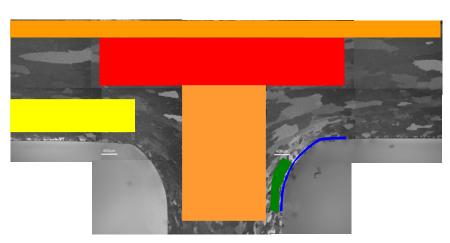
f volume fraction

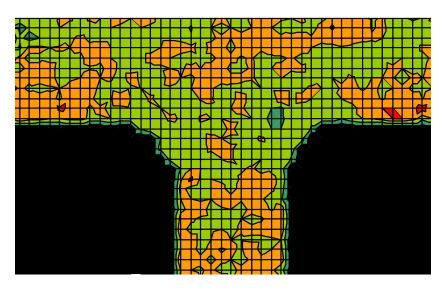

 \overline{F} mean interaction force between dislocations and particles

Metallography

Grain size differences indicate influence of strain history




Metallography


No correlation between grain size and hardness (HV)

Grain size map (ASTM numbers)

Hardness map (HV)

Remaining Work

- Complete DEFORM development
 - Vary speed, quench conditions
- Integrate DEFORM using iSight-FD
- Complete strength model and verify against published data (tune PrecipiCalc)
- Reconcile hardness variation with model results
- > Fully-coupled runs, generate response surface

Summary

- Computational Materials Science: important advance
- Navy committed to developing capability
- > Application balances difficulty vs. substantial result
- Built infrastructure with iSight, Thermo-Calc, PrecipiCalc, DEFORM 3D, Custom microstructure model, databases
- Networked system based on available resources
- ➤ Thermal history, extrusion process—precipitate distribution
- \triangleright PrecipiCalc can predict realistic β' and β'' distributions
- Precipitate size distribution influences strength
- Actual part shows strength variations to be reconciled with models

Sponsors

Dr. Julie Christodoulou, ONR Code 332

NSWCCD Code 61 Technology Enterprise

NSWCCD Code 0020 Bid & Proposal